Phone 248-362-1145
Fax 248-362-1032
1834 Thunderbird Street
Troy, MI 48084 USA

Engineering, manufacturing, sales, service, calibration, testing, and modification, of mechanical and electric fuel injection systems and components for all types of racing and performance.

Constant Flow Mechanical 2017-07-13T17:24:34+00:00

Constant flow systems are very flexible and cost effective for many types of racing, engine configurations, and fuels. They are capable of supplying a very wide range of fuel requirements. The system can be easily configured and tuning is accomplished by increasing or decreasing the systems operating pressure.

A constant flow system uses a mechanical fuel pump to increase/decrease the supply flow to the injection unit directly related to engine rpm. This variable flow creates pressure against the fixed orifices of the main bypass jet and the nozzles. Using a barrel valve assembly the idle and the part throttle fuel rate is controlled. Kinsler can supply additional bypasses and enrichment circuits to give added flexibility.

 

 NOZZLE DISCHARGE STYLES : 
‘A’ type : fuel is discharged at 45 to body through notch cut in deflector, commonly called ‘whistle’ or ‘notched’. ‘AS’ type : fuel discharged in line with body through a diffuser screen, commonly called ‘screen tip’ or ‘shot-gun’.

Kinsler_Ano_QD_Quick_Disconnect_Main_Bypass_Valve Kinsler_Flowed_Main_Jets_Also_Called_Pills

 K-TYPE JETS :
Even a perfect fuel injection unit is of little use to the owner unless he has a good set of jets to use with it. When using commercially made jets, it is not unusual when going .005″ smaller in jet size (in an attempt to richen  the unit) to actually find no fuel rate change, or perhaps go grossly rich, or even to go a bit leaner! This makes it impossible to “tune in” the engine for best power and consistence.

EACH K-type jet is precisely machined and stamped with the “KINSLER” name to identify it. It has a reamed orifice controlled within .0002″, a precise radius leading to the orifice, and a regulated finish.

Every K-type jet is tailored on the flow bench to within 1/2% of the flow rate of the master reference jet of its same size. Therefore, even though the increments between the K-type jets are very small (.002″ available), the change in flow rate between each jet is the same. Every jet of the same size flows the same, if one jet is lost, an exact duplicate can be shipped immediately.

A) Because of the larger radius entrance to the metering orifice in the K-type jets, you must start with a K-type jet that is about .008″ smaller than the conventional jet that you are replacing if you want to retain your present fuel rate.

B) Always install the jet so that the number is facing up as you drop the jet in, then the fuel will flow into the radiused side of the jet. After the jet can has been assembled, the number will be facing toward the poppet.

C) Make sure the jet can end has an o-ring receiving groove and that an o-ring is in place for the jet to sit on. Note: the jet sealing o-ring should be replace periodically to make sure that the compound has not “dried” out.

We can make variations of these nozzles and special nozzles, contact us below.

Kinsler nozzle
flow code
lbs./hr low
per nozzle .72 sp. gr.
gasoline at 30 psi
Nominal
orifice size
Hilborn Size + or – approx. 4% from flows shown at left Crower and Enderle nozzle size (they code their inserts differently)
E-165
F-200
G-240
H-280
J-320
K-385
L-410
N-510
P-560
Q-620
S-710
T-792
U-845
V-900
X-39 1040
16.5
20.0
24.0
28.0
32.0
38.5
41.0
51.0
56.0
62.0
71.0
79.2
84.5
90.0
104.0
.016″
.017″
.020″
.0215″
.0225″
.024″
.025″
.028″
.029″
.032″
.033″
.035″
.0355″-.036″
.036″-.037″
.039″
4
5
6
7
8
9
10
12
14
16
18
20
22
24
27
16
17
20
21
22
24
25
28
29
32
33
35
36
37
39


Deflector Types

‘A’ Type: Fuel discharged at 45 degrees to body through notch cut in deflector:
commonly called ‘whistle’ or ‘notched’.
‘AS’ Type: Fuel discharged in line with body through a diffuser screen:
commonly called ‘screen tip’ or ‘shot-gun’

Nozzle Venting Vents let air premix with the fuel inside the nozzle for better atomization.

Externally Vented : For
normally aspirated engines
(unblown). Vented to the
atmosphere. Use #5020
KFI nozzle vent filter
biscuits for protection
against dirt.
Internally Vented: For
normally aspirated engines.
Vents frow inside the runner
of the manifold or cylinder
head.
Non-Vented & Z-type : For supercharged or
turbocharged use were the nozzle exit sees
the manifold boost.
Vent location and quantity One and three
vent nozzles drip into the engine on shut off
are the safest. Four and six vent nozzles drip
outside on shut off present a tiny-fire hazard
but prevent any possible cyl. washdown.

 

 Kinsler_Three_Piece_Manifold
Constant flow nozzle

 

ORIFICE THEORY
For nozzles, bypass jets, carb jets
A sharp edge at the orifice entrance causes the flow stream to converge, the smallest flow cross section being termed the vena contracta and is the point of lowest pressure. The vena results in less flow through a given hole size than a piece with a rounded entrance.

The particle of fuel coming straight down
a bit off to the left or
in at an angle at the
right both find their
way into the hole.
This design is the
least sensitive to
machine marks, but
the blend of the
radius to the bore is very important.  Not easily damaged, as nicks from handling tend to be on the top
surface.
The particle a bit off
to the left tends to hit
the top surface; may
bounce off to the left,
or into the hole. The
particle coming in
from the right will go
into the hole.
This design is quite
difficult to make, as
the sharp edge must
be the same on all
the holes, with no
nicks. It is easily
damaged by nicking
the edge.
The particle a bit
off to the left will
not enter the hole. The particle coming
in from the right
may not enter the hole.
You would never really see this design in a jet, but
it is exactly like a ramtube without a bell. The top edge
is easily damaged.

We use only fully radiused type orifice approaches in all our nozzles and jets. Every nozzle and jet we make is done with great care, but they still don’t all turn out properly. Each piece is flowed at three different pressures, then compared to the master flow sheet If it isn’t within tolerance, it is scrapped. Testing at three pressures is important because some pieces will flow perfect at low flows, but then go turbulent (due to imperfections on the surface) at high flows…. we call this a “shift” in the flow. All of this quality control costs more money, but it assures you of receiving the best possible peices in the industry.

Flow through an orifice
Pressure rises as the square of the flow through an orifice, so to double the flow through a jet nozzle takes four times the pressure:Flow_through_an_orifice_theory

If we know the flow of a jet or nozzle at some pressure, we can figure out the flow at a new pressure:

 Kinsler_Flow_Theory